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Classification

@ Supervised learning area where the ith response y; is one of K
discrete classes.
oy €{0,1,....K—1}fori=1,2,...,N.
o Also called groups or labels.
@ We know the K classes a priori.
°oy= (Y17Y2,- . 'ayN)/
e Covariates (or features) x; € R,
o X =(x1,x2,...,xpn)
@ The classical approach is to partition R, into K mutually
exclusive sets.
@ For a future observation without a recorded response, we wish

to predict the response.
e The goal is to minimize the prediction error.



Classification

@ From our training data, we build a classifier.
e This is a function of the training covariates X.

@ For an unlabeled observation, we classify (or predict) it to
one of the K classes with the classifier.

@ The error rate of a classifier is the true probabibility that an
unlabeled observation will be incorrectly classified.

@ Often we partition the available data into training data and
validation (or test) data to estimate the error rate.

e This reduces the number of available training observations and
can be counterproductive if p >> N.



High-Dimensional Data

@ High-dimensional data are becoming increasingly common.
e Automatic collection of large quantities of data.
o Large storage space (e.g. hard drives, cloud storage).

@ Design shift in statistical data analysis in many disciplines.

o Less focus on a few well-selected variables
e More focus on identifying the most relevant variables among a
large number of variables.

@ Increases the difficulty of classification and other machine
learning methods.
e Difficult to visualize beyond p = 3.
o “Curse of dimensionality” (Bellman, 1961).



Curse of Dimensionality

N/p is preferred to be large.

If not, we have data sparsity
Sometimes it can be difficult to obtain sufficiently more
observations than the feature space dimension, p.

e Often p>>n
e Example: Microarray data

Classical estimators are usually unstable when p >> N

Asymptotic results become problematic



Possible Solutions

Feature/variable selection.
e Determine which, if any, variables are relevant.
o Omit variables from the model that appear relatively
unimportant through feature selection.

Emphasize variables algorithmically through methods such as
regularization.

Dimension reduction.

Ignore interactions.



Quadratic Discriminant Analysis (QDA)

@ Quadratic classification boundaries
di(x) = (x — i) T2 (x = )T+ In By = 2Inme (1)

@ Often MLEs are substituted for unknown parameters

o Sy for Xy
o Xy for puy
° ﬁk fOI”]Tk

o Classify x to class k where

dy(x) = 1232;( dk(x)



Linear Discriminant Analysis (LDA)

Linear classification boundaries
Special case of QDA
e X=X
dk(X) = (X — [J,k)Tzfl(X — ,uk)T — 2Inm
MLE for X is the pooled sample covariance matrix S,



QDA with High-Dimensional Data

@ Spectral Decomposition of Z;l

p
_ ViV;
==, )

@ v; is the ith eigenvector of X and corresponding eigenvalue e;

@ (2) is heavily weighted by the smallest eigenvalues and the
directions associated with their eigenvector

e Hence (1) is also



Shrinking

Sy is singular when n, < p

o Eigenvalues are near 0.
o S; ! is numerically unstable

Stabilize eigenvalues S;l by computing the ridge estimator

Sk(7) =Sk +lp, 7v>0

An equivalent form is given by

Sk(7) =Sk + (L =), v€10,1] (3)

v is chosen by crossvalidation
(1) is stabilized by substituting (3) for X



Regularized Discriminant Analysis (RDA)

@ Friedman (1989) proposed a classifier that is a convex
combination of the class covariance matrices and the pooled
sample covariance matrix

B\ = (1= NSk +2S,, A€ 0,1] (4)

@ Then we shrink (4) and scale by the average of the
eigenvalues of 3, (\) to obtain

tr{Sk(\)}

» I, 7€[0,1] (5)

2k (A7) = (1 =NV +
@ Substitute (5) into (1) for the RDA classifier

o LDA: A=1,7=0

o QDA: A =0,v=0

o Nearest Means: A=0,y=1



RDA Model Selection

e Friedman recommends to construct a unit grid of (), ) values

° A:()\l,)\z,...,)\s), )\J'E[O,]_]

e ’Y:(’Yla'}?)"'a’YB)? 7}6[0’1]
o Grid: A x

Compute the conditional error rate (CER) at each grid point

The grid point with the minimum CER is the selected model
Other model selection methods in the literature (highly
variable)

o Particle Swarm Optimization
o Nelder-Mead



Problems with the Grid Method

@ The minimum CER is often not unique, resulting in ties
o For this poster we choose the (\,~) point closest (in squared
distance) to LDA (A=1,7=0)
e Computationally expensive

o Eased by Friedman's " down-dating” algorithm for the
leave-one-out (LOO) CER

o The grid is “embarrassingly parallel” and can take advantage
of parallel processing, such as the R package foreach

o GreedyGrid



GreedyGrid Algorithm

@ Heuristic algorithm that explores the grid to find the (A,~)
pairs to find those that are minimum

@ Leads to tremendous savings while allowing for very precise
grids

GreedyGrid Algorithm

Q Initial: Compute CERU at \; = )\LB/QJ,’)/J' =\B/2)

@ Compute CER at (Ai—1,7j), (Ai+1,7%), (Aisyi-1), (Ais j41)
@ Seti=/andj=j
0 Go to Step #2

@ Return A= ); and 4 = v



Simulation Experiments

We study two of the simulation experiments considered by
Friedman

K = 3 populations (classes)
N = 45 labels are randomly drawn
Consider feature space dimension p = 10, 30, 60, 90

Expected Error Rate (EER) estimated by generating 1000
observations from each class and classifying with training
classifiers



Simulation Experiment #1

@ Orthogonal Means
o U1 = (07030,07""0)7—
o 12 =1(0,3,0,0,...,0)7
o 13 =(0,0,4,0,...,0)7
@ Unequal Spherical Covariance Matrices
o Xy =1,
o 3, =2,
o 33 =3I,



Simulation Experiment #1 - Heatmaps
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Figure: Heatmaps for Grid CER, GreedyGrid CER, and EER with p = 90.
The minimum EER of 0.078 (0.008) is attained at ()\,~) = (0.05,0.85).
Grid size = 441. Greedy Grid Size = 150.



Simulation Experiment #2

o Class means:

@ lj1 = 0

@ ljpp = 14/\/[3

o fiz = (—1) poi
@ Unequal Highly Ellipsoidal Covariance Matrices

e High and low variance subspaces of classes 1 and 2 are

complementary to each other

e Third class has low variance and high variance in the
intermediate subspace and complementary high/low variance
subspaces 1 and 2, respectively
eix is the ith eigenvalue of ¥y for 1 < i <p
en=1[9(i-1)/(p—1)+1]
ex =[9(p—1)/(p—1)+1J
ez = {9l — (p—1)/2]/(p - 1)}?



Simulation Experiment #2 - Heatmaps

Figure: Heatmaps for Grid CER, GreedyGrid CER, and EER with p = 90.
The minimum EER of 0.097 (0.009) is attained at (), ) = (0.00,0.70).
Grid size = 441. Greedy Grid Size = 87.



Simulation Experiment #2 - GreedyGrid Sizes

GreedyGrid Size

Experiment Number

Figure: GreedyGrid Size when Grid Size is 441



Conclusion

@ Classification of high-dimensional is a difficult but common
problem.

RDA is able to classify with low EER when p >> N.

This will require more model selection methods.
Future Work:

o Apply to real high-dimensional data sets.

Use other error rate estimators such as .632.
Mathematically-based model selection algorithm for RDA.
Break ties.
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