Efficient Model Selection for Regularized Discriminant Analysis

John A. Ramey

Department of Statistical Science Baylor University

Wednesday, August 4, 2010

Classification

- Supervised learning area where the ith response y_i is one of K discrete classes.
 - $y_i \in \{0, 1, \dots, K-1\}$ for $i = 1, 2, \dots, N$.
 - Also called groups or labels.
- We know the K classes a priori.
- $\mathbf{y} = (y_1, y_2, \dots, y_N)'$
- Covariates (or features) $\mathbf{x}_i \in \mathbb{R}_p$
- $X = (x_1, x_2, ..., x_N)'$
- The classical approach is to partition \mathbb{R}_p into K mutually exclusive sets.
- For a future observation without a recorded response, we wish to predict the response.
 - The goal is to minimize the prediction error.

Classification

- From our training data, we build a classifier.
 - This is a function of the training covariates X.
- For an unlabeled observation, we classify (or predict) it to one of the K classes with the classifier.
- The **error rate** of a classifier is the true probabibility that an unlabeled observation will be incorrectly classified.
- Often we partition the available data into training data and validation (or test) data to estimate the error rate.
 - This reduces the number of available training observations and can be counterproductive if p >> N.

High-Dimensional Data

- High-dimensional data are becoming increasingly common.
 - Automatic collection of large quantities of data.
 - Large storage space (e.g. hard drives, cloud storage).
- Design shift in statistical data analysis in many disciplines.
 - Less focus on a few well-selected variables
 - More focus on identifying the most relevant variables among a large number of variables.
- Increases the difficulty of classification and other machine learning methods.
 - Difficult to visualize beyond p = 3.
 - "Curse of dimensionality" (Bellman, 1961).

Curse of Dimensionality

- N/p is preferred to be large.
- If not, we have data sparsity
- Sometimes it can be difficult to obtain sufficiently more observations than the feature space dimension, p.
 - Often p >> n
 - Example: Microarray data
- Classical estimators are usually unstable when p >> N
- Asymptotic results become problematic

Possible Solutions

- Feature/variable selection.
 - Determine which, if any, variables are relevant.
 - Omit variables from the model that appear relatively unimportant through feature selection.
- Emphasize variables algorithmically through methods such as regularization.
- Dimension reduction.
- Ignore interactions.

Quadratic Discriminant Analysis (QDA)

Quadratic classification boundaries

$$d_k(\mathbf{x}) = (\mathbf{x} - \mu_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \mu_k)^T + \ln|\mathbf{\Sigma}_k| - 2\ln\pi_k \quad (1)$$

- Often MLEs are substituted for unknown parameters
 - \mathbf{S}_k for $\mathbf{\Sigma}_k$
 - ullet $ar{\mathbf{x}}_k$ for $oldsymbol{\mu}_k$
 - $\hat{\pi}_k$ for π_k
- Classify \mathbf{x} to class \hat{k} where

$$d_{\hat{k}}(\mathbf{x}) = \min_{1 \leq k \leq K} d_k(\mathbf{x})$$

Linear Discriminant Analysis (LDA)

- Linear classification boundaries
- Special case of QDA

$$ullet$$
 $oldsymbol{\Sigma}_k \equiv oldsymbol{\Sigma}$

•
$$d_k(\mathbf{x}) = (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)^T - 2 \ln \pi_k$$

ullet MLE for Σ is the pooled sample covariance matrix ${f S}_p$

QDA with High-Dimensional Data

ullet Spectral Decomposition of $oldsymbol{\Sigma}_k^{-1}$

$$\Sigma_k^{-1} = \sum_{i=1}^p \frac{\mathbf{v}_i \mathbf{v}_i^T}{e_i} \tag{2}$$

- ullet $oldsymbol{v}_i$ is the ith eigenvector of $oldsymbol{\Sigma}_k$ and corresponding eigenvalue e_i
- (2) is heavily weighted by the smallest eigenvalues and the directions associated with their eigenvector
 - Hence (1) is also

Shrinking

- S_k is singular when $n_k < p$
 - Eigenvalues are near 0.
 - S_k^{-1} is numerically unstable
- Stabilize eigenvalues \mathbf{S}_k^{-1} by computing the ridge estimator

$$\mathbf{S}_k(\gamma) = S_k + \gamma \mathbf{I}_p, \quad \gamma > 0$$

An equivalent form is given by

$$\mathbf{S}_{k}(\gamma) = \gamma S_{k} + (1 - \gamma)\mathbf{I}_{p}, \quad \gamma \in [0, 1]$$
(3)

- ullet γ is chosen by crossvalidation
- ullet (1) is stabilized by substituting (3) for Σ_k

Regularized Discriminant Analysis (RDA)

 Friedman (1989) proposed a classifier that is a convex combination of the class covariance matrices and the pooled sample covariance matrix

$$\hat{\Sigma}_k(\lambda) = (1 - \lambda)\mathbf{S}_k + \lambda\mathbf{S}_p, \quad \lambda \in [0, 1]$$
 (4)

• Then we shrink (4) and scale by the average of the eigenvalues of $\hat{\Sigma}_k(\lambda)$ to obtain

$$\hat{\Sigma}_{k}(\lambda,\gamma) = (1-\gamma)\hat{\Sigma}_{k}(\lambda) + \gamma \frac{\operatorname{tr}\{\hat{\Sigma}_{k}(\lambda)\}}{\rho} \mathbf{I}_{\rho}, \quad \gamma \in [0,1] \quad (5)$$

- Substitute (5) into (1) for the RDA classifier
 - LDA: $\lambda = 1, \gamma = 0$
 - QDA: $\lambda = 0, \gamma = 0$
 - Nearest Means: $\lambda=0, \gamma=1$

RDA Model Selection

ullet Friedman recommends to construct a unit grid of (λ, γ) values

```
• \lambda = (\lambda_1, \lambda_2, \dots, \lambda_B), \quad \lambda_j \in [0, 1]
• \gamma = (\gamma_1, \gamma_2, \dots, \gamma_B), \quad \gamma_j \in [0, 1]
```

- Grid: $\lambda \times \gamma$
- Compute the conditional error rate (CER) at each grid point
- The grid point with the minimum CER is the selected model
- Other model selection methods in the literature (highly variable)
 - Particle Swarm Optimization
 - Nelder-Mead

Problems with the Grid Method

- The minimum CER is often not unique, resulting in ties
 - For this poster we choose the (λ,γ) point closest (in squared distance) to LDA $(\lambda=1,\gamma=0)$
- Computationally expensive
 - Eased by Friedman's "down-dating" algorithm for the leave-one-out (LOO) CER
 - The grid is "embarrassingly parallel" and can take advantage of parallel processing, such as the R package foreach
 - GreedyGrid

GreedyGrid Algorithm

- Heuristic algorithm that explores the grid to find the (λ, γ) pairs to find those that are minimum
- Leads to tremendous savings while allowing for very precise grids

GreedyGrid Algorithm

- Initial: Compute CER_{ij} at $\lambda_i = \lambda_{\lfloor B/2 \rfloor}, \gamma_j = \gamma_{\lfloor B/2 \rfloor}$
- **②** Compute **CER** at $(\lambda_{i-1}, \gamma_j)$, $(\lambda_{i+1}, \gamma_j)$, $(\lambda_i, \gamma_{j-1})$, $(\lambda_i, \gamma_{j+1})$
- - Go to Step #2
- Return $\hat{\lambda} = \lambda_i$ and $\hat{\gamma} = \gamma_j$

Simulation Experiments

- We study two of the simulation experiments considered by Friedman
- K = 3 populations (classes)
- N = 45 labels are randomly drawn
- Consider feature space dimension p = 10, 30, 60, 90
- Expected Error Rate (EER) estimated by generating 1000 observations from each class and classifying with training classifiers

Simulation Experiment #1

- Orthogonal Means
 - $\mu_1 = (0,0,0,0,\ldots,0)^T$

•
$$\mu_2 = (0, 3, 0, 0, \dots, 0)^T$$

•
$$\mu_3 = (0, 0, 4, 0, \dots, 0)^T$$

- Unequal Spherical Covariance Matrices
 - ullet $\Sigma_1 = oldsymbol{\mathsf{I}}_{
 ho}$
 - $\Sigma_2 = 2I_p$
 - $\Sigma_3 = 3I_p$

Simulation Experiment #1 - Heatmaps

Figure: Heatmaps for Grid CER, GreedyGrid CER, and EER with p=90. The minimum EER of 0.078 (0.008) is attained at $(\lambda, \gamma)=(0.05, 0.85)$. Grid size = 441. Greedy Grid Size = 150.

Simulation Experiment #2

- Class means:
 - $\mu_{i1} = 0$
 - $\mu_{i2} = 14/\sqrt{p}$
 - $\mu_{i3} = (-1)^i \mu_{2i}$
- Unequal Highly Ellipsoidal Covariance Matrices
 - High and low variance subspaces of classes 1 and 2 are complementary to each other
 - Third class has low variance and high variance in the intermediate subspace and complementary high/low variance subspaces 1 and 2, respectively
 - e_{ik} is the *i*th eigenvalue of Σ_k for $1 \leq i \leq p$
 - $e_{i1} = [9(i-1)/(p-1)+1]^2$
 - $e_{i2} = [9(p-i)/(p-1)+1]^2$
 - $e_{i3} = \{9[i (p-1)/2]/(p-1)\}^2$

Simulation Experiment #2 - Heatmaps

Figure: Heatmaps for Grid CER, GreedyGrid CER, and EER with p=90. The minimum EER of 0.097 (0.009) is attained at $(\lambda, \gamma) = (0.00, 0.70)$. Grid size = 441. Greedy Grid Size = 87.

Simulation Experiment #2 - GreedyGrid Sizes

Figure: GreedyGrid Size when Grid Size is 441

Conclusion

- Classification of high-dimensional is a difficult but common problem.
- RDA is able to classify with low EER when p >> N.
- This will require more model selection methods.
- Future Work:
 - Apply to real high-dimensional data sets.
 - Use other error rate estimators such as .632.
 - Mathematically-based model selection algorithm for RDA.
 - Break ties.

References

- Bellman, R.E. (1961). Adaptive Control Processes. Princeton University Press: Princeton, NJ.
- Friedman, J. H. (1989). "Regularized Discriminant Analysis." Journal of American Statistical Association, 84, 165-175.