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Classification

Supervised learning area where the ith response yi is one of K
discrete classes.

yi ∈ {0, 1, . . . ,K − 1} for i = 1, 2, . . . ,N.
Also called groups or labels.

We know the K classes a priori.

y = (y1, y2, . . . , yN)′

Covariates (or features) xi ∈ Rp

X = (x1, x2, . . . , xN)′

The classical approach is to partition Rp into K mutually
exclusive sets.

For a future observation without a recorded response, we wish
to predict the response.

The goal is to minimize the prediction error.



Classification

From our training data, we build a classifier.

This is a function of the training covariates X.

For an unlabeled observation, we classify (or predict) it to
one of the K classes with the classifier.

The error rate of a classifier is the true probabibility that an
unlabeled observation will be incorrectly classified.

Often we partition the available data into training data and
validation (or test) data to estimate the error rate.

This reduces the number of available training observations and
can be counterproductive if p >> N.



High-Dimensional Data

High-dimensional data are becoming increasingly common.

Automatic collection of large quantities of data.
Large storage space (e.g. hard drives, cloud storage).

Design shift in statistical data analysis in many disciplines.

Less focus on a few well-selected variables
More focus on identifying the most relevant variables among a
large number of variables.

Increases the difficulty of classification and other machine
learning methods.

Difficult to visualize beyond p = 3.
“Curse of dimensionality” (Bellman, 1961).



Curse of Dimensionality

N/p is preferred to be large.

If not, we have data sparsity

Sometimes it can be difficult to obtain sufficiently more
observations than the feature space dimension, p.

Often p >> n
Example: Microarray data

Classical estimators are usually unstable when p >> N

Asymptotic results become problematic



Possible Solutions

Feature/variable selection.

Determine which, if any, variables are relevant.
Omit variables from the model that appear relatively
unimportant through feature selection.

Emphasize variables algorithmically through methods such as
regularization.

Dimension reduction.

Ignore interactions.



Quadratic Discriminant Analysis (QDA)

Quadratic classification boundaries

dk(x) = (x− µk)TΣ−1k (x− µk)T + ln |Σk | − 2 lnπk (1)

Often MLEs are substituted for unknown parameters

Sk for Σk

x̄k for µk

π̂k for πk

Classify x to class k̂ where

dk̂(x) = min
1≤k≤K

dk(x)



Linear Discriminant Analysis (LDA)

Linear classification boundaries

Special case of QDA

Σk ≡ Σ

dk(x) = (x− µk)TΣ−1(x− µk)T − 2 lnπk

MLE for Σ is the pooled sample covariance matrix Sp



QDA with High-Dimensional Data

Spectral Decomposition of Σ−1k

Σ−1k =

p∑
i=1

viv
T
i

ei
(2)

vi is the ith eigenvector of Σk and corresponding eigenvalue ei
(2) is heavily weighted by the smallest eigenvalues and the
directions associated with their eigenvector

Hence (1) is also



Shrinking

Sk is singular when nk < p

Eigenvalues are near 0.
S−1k is numerically unstable

Stabilize eigenvalues S−1k by computing the ridge estimator

Sk(γ) = Sk + γIp, γ > 0

An equivalent form is given by

Sk(γ) = γSk + (1− γ)Ip, γ ∈ [0, 1] (3)

γ is chosen by crossvalidation

(1) is stabilized by substituting (3) for Σk



Regularized Discriminant Analysis (RDA)

Friedman (1989) proposed a classifier that is a convex
combination of the class covariance matrices and the pooled
sample covariance matrix

Σ̂k(λ) = (1− λ)Sk + λSp, λ ∈ [0, 1] (4)

Then we shrink (4) and scale by the average of the
eigenvalues of Σ̂k(λ) to obtain

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γ
tr{Σ̂k(λ)}

p
Ip, γ ∈ [0, 1] (5)

Substitute (5) into (1) for the RDA classifier

LDA: λ = 1, γ = 0
QDA: λ = 0, γ = 0
Nearest Means: λ = 0, γ = 1



RDA Model Selection

Friedman recommends to construct a unit grid of (λ, γ) values

λ = (λ1, λ2, . . . , λB), λj ∈ [0, 1]
γ = (γ1, γ2, . . . , γB), γj ∈ [0, 1]
Grid: λ× γ

Compute the conditional error rate (CER) at each grid point

The grid point with the minimum CER is the selected model

Other model selection methods in the literature (highly
variable)

Particle Swarm Optimization
Nelder-Mead



Problems with the Grid Method

The minimum CER is often not unique, resulting in ties

For this poster we choose the (λ, γ) point closest (in squared
distance) to LDA (λ = 1, γ = 0)

Computationally expensive

Eased by Friedman’s ”down-dating” algorithm for the
leave-one-out (LOO) CER
The grid is “embarrassingly parallel” and can take advantage
of parallel processing, such as the R package foreach

GreedyGrid



GreedyGrid Algorithm

Heuristic algorithm that explores the grid to find the (λ, γ)
pairs to find those that are minimum

Leads to tremendous savings while allowing for very precise
grids

GreedyGrid Algorithm

1 Initial: Compute CERij at λi = λbB/2c, γj = γbB/2c
2 Compute CER at (λi−1, γj), (λi+1, γj), (λi , γj−1), (λi , γj+1)
3 If CERij ≥ min CERi ′j ′

1 Set i = i ′ and j = j ′

2 Go to Step #2

4 Return λ̂ = λi and γ̂ = γj



Simulation Experiments

We study two of the simulation experiments considered by
Friedman

K = 3 populations (classes)

N = 45 labels are randomly drawn

Consider feature space dimension p = 10, 30, 60, 90

Expected Error Rate (EER) estimated by generating 1000
observations from each class and classifying with training
classifiers



Simulation Experiment #1

Orthogonal Means

µ1 = (0, 0, 0, 0, . . . , 0)T

µ2 = (0, 3, 0, 0, . . . , 0)T

µ3 = (0, 0, 4, 0, . . . , 0)T

Unequal Spherical Covariance Matrices

Σ1 = Ip
Σ2 = 2Ip
Σ3 = 3Ip



Simulation Experiment #1 - Heatmaps

Figure: Heatmaps for Grid CER, GreedyGrid CER, and EER with p = 90.
The minimum EER of 0.078 (0.008) is attained at (λ, γ) = (0.05, 0.85).
Grid size = 441. Greedy Grid Size = 150.



Simulation Experiment #2

Class means:

µi1 = 0
µi2 = 14/

√
p

µi3 = (−1)iµ2i

Unequal Highly Ellipsoidal Covariance Matrices

High and low variance subspaces of classes 1 and 2 are
complementary to each other
Third class has low variance and high variance in the
intermediate subspace and complementary high/low variance
subspaces 1 and 2, respectively
eik is the ith eigenvalue of Σk for 1 ≤ i ≤ p
ei1 = [9(i − 1)/(p − 1) + 1]2

ei2 = [9(p − i)/(p − 1) + 1]2

ei3 = {9[i − (p − 1)/2]/(p − 1)}2



Simulation Experiment #2 - Heatmaps

Figure: Heatmaps for Grid CER, GreedyGrid CER, and EER with p = 90.
The minimum EER of 0.097 (0.009) is attained at (λ, γ) = (0.00, 0.70).
Grid size = 441. Greedy Grid Size = 87.



Simulation Experiment #2 - GreedyGrid Sizes

Figure: GreedyGrid Size when Grid Size is 441



Conclusion

Classification of high-dimensional is a difficult but common
problem.

RDA is able to classify with low EER when p >> N.

This will require more model selection methods.

Future Work:

Apply to real high-dimensional data sets.
Use other error rate estimators such as .632.
Mathematically-based model selection algorithm for RDA.
Break ties.
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